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Abstract

We will introduce the topological E,-operads and relate them to loop spaces via May’s
delooping theorem, following [2]. We also briefly state how to obtain the E,, oo-operads.
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1 Prerequisites

This section introduces the loop space and suspension functors. Further the Dold-Kan corre-
spondence is introduced and used to construct infinite loop spaces.

1.1 Loop spaces and suspension

Let (X, ), (Y,y) be elements of the category Top. of based topological spaces. The loop space
QX of X is the set of continuous maps

QX := Top.(S*, X)
equipped with the compact open topology. The (reduced) suspension ¥.X of X is given
YX =X x[0,1]/(X x0,1U{x} x [0,1])
which is homotopy equivalent to the smash product
YX ~ X ASh
The suspension has the nice property, that

¥S” ~ S



To show that there is an adjuntion > - €, consider the inverse maps
¢:T(X,QY) = T(XEX,Y),

¢(N)(z,8)] = f(2,5)

and
v :T(EX,Y) = T(X,QY).

1/)(9)(% S) = g[(m, S)]

The second map ¢ is clearly well defined, checking that for the first one is not hard. For
example [z, s] = [z, 0] for all s € [0,1] and

f(x,O):y:f(x,s),

for f € T(X,QY) because the map preserves base points.

Next we want to study the effect of the loop space on the homotopy groups of X. Recall:
The n-th homotopy group of X has the underlying set of homotopy classes of based maps
S™ — X. The problem at this point is that the adjunction relates the sets of morphisms and
not homotopy classes of morphisms. It turns out is does, by arguments involving the internal
hom from the circle, smash product with the circle adjunction in Top,, when X is Hausdorff.
For all details, see corollary 2.8 in [3]. One obtains the for the classes

[f] € [(8",QX)] = m(QX) ~ [6(f)] € [(§", QX)] = a1 (X).

Excercise: Show this isomorphisms respects the group structure.
The unit of the adjunctions gives a map

X = Q¥X

we will later repeatedly use.

At this point we can ask for examples of loop spaces, iterated loop spaces and also infinite loop

spaces. Of course, given any space (X, z), we can form 2"X. and even Q%X := hrEQkEkX,
—

where we use the maps Q"%" — Q*H137*1! obtained from the adjunction unit. Also, recall
that the direct limit in Top can be obtained by taking the direct limit in Set with the final
topology from the maps into the colimit, i.e. the finest topology so that there are continuous.
An easy example, which is already an infinite loop space is the circle S', because

St~ K(Z,1).

We call a space X the Eilenberg-MacLane K(G,n) if

G, ifk=n
Wk(X)Z{

0, otherwise.

It turns out these exist if G is group and n = 1 or GG is an abelian group and n > 1 and
are unique up to homotopy. We will construct them in the next section. Given K(G,n), its
loopspace satisfies QK (G,n) = K(G,n — 1). Thus any Eilenberg-MacLane space is the loop
space of another Eilenberg-MacLane space and thus an infinite loop space.



1.2 Dold-Kan correspondence

The Dold-Kan correspondence is a classical tool from homological algebra, relating the cate-
gory of chain complexes and category of simplicial objects in an abelian category. The main
refrence beeing used is [4].

Theorem 1.1 ((Dold-Kan correspondence)). For any abelian category <, the normalized
chain complez functor N is an equivalence of categories between S<f , the category of functors

Sat = Fun(A%, o),
and Ch<o(</). Under this correspondence, simplicial homotopy corresponds to homology
T« (As) ~ H (N(Ay)),

for A, € Sof. The functor N is defined by
n—1
N(A), = ﬂ ker(0; : Ap — An—1), with differential d = (—1)"0p.
i=0
We will not proof this theorem, but only state the inverse functor K. Let C € Ch<o(%/),
define the sets

K.(C):= P Cm.
7:[n]—[m]
Let a : [m] — [n]. To define the action K, () on the factor C), corresponding to 7 : [n] — [p],
take the epi-monic factorization 1’ o € of 5o . Then define K, (a) : Cp = Caom(e), Where the
summands correspond to 77 and 7]/, by

idc,, if dom(e) = [n],
Kn(a) == < dp, if dom(e) = [n—1],

0, otherwise.

To relate simplicial constructions like the two sided bar construction, see section (2.3) , to
known constructions for chain complexes, it can be useful to use a variation of the normalized
chain complex functor N, called the alternating face map complex functor C, given by

C(A.)p = Ay, with differential d, = » (—1)'0;.
=0

It turns out that these are homotopy equivalent.

To construct K(G,n), if G is abelian, take the chain complex with entry G in degree n and
0 otherwise, apply the functor K and take the geometric realization. If n = 1 and G is
nonabelian, take the geometric realization of the category BG to obtain K(G,1).

2 May’s delooping theorem

Our goal will be to find conditions on when a space is an n-fold loop space, following [2]. To
state and proof May’s delooping theorem we have to develop some tools first.



2.1 Monads from operads

We want to study operads in the category of topological spaces. An algebra over a topological
operad C is also called a C-space. Such an action corresponds to the data of maps

0°:Ci) x X' — X
satisfying associativity and unitality properties.
We now want to construct a monad from an operad.
Definition A monad (T, u,n) in Top, is a monoid in the category of endofunctors

T € Fun(Top., Top,), meaning that for any X € Top, the following diagrams commute.

T3x —Th ., T2

Tx I, T2y TX
i lu " luT M
id
TX

T2Xx " TX

An algebra over T is an object X € Top with a map £ : TX — X, called the structure map,
so that the following diagrams commute.

X 15 Tx X Y571
\dJ l& lT& l&
X TX —* X

Example Given an adjunction f: A <> B : g, one can associate the monad fog: B — B,
where n and p are constructed from the unit and counit respectively.

Given a topological operad (O, ), we can associate a monad T, definded on objects X € Top,
by

[ToG) x X7/~

0<j
where ~ is the equivalence relation generated by relating the action of the symmetric group
Y on O(j) and X J and factoring out degenerate elements, where the second part means that
for y € X771 and ¢ € O(j)

(7(67 11 X %k X 1j7i71)7y) ~ (C, (yh e Yis ¥ Yit 1y - 7yj—1)~
On morphisms f: X — X', define
To(f) : ToX — ToX .

[e;x] = e, f(2)]
We define the multiplication p : T(Q)X — ToX and unit n: X — Tp X pointwise by
,LL([C, [dlv yl}v se ey [dk7yk’]]) = [7(67 d17 so0y dk)? <y17 e 7yk)]7
where ¢ € O(k), ds € C(js) and ys € X’ and
77(575) = [17 l‘},

where x € X. The well definedness is more or less obvious. We only check one of the unitality
properties. Given [c,y] € TX, one finds that

(T ([c,y]) = p((1, e, y]) = [v(15¢), 9] = [c, y].

This construction is also functorial in the input of the operad, where the functor acts pointwise
on the first component of the equivalence classes. The point of this construction is the following
proposition relating algebras over the operad and monad respectivly.
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Proposition 2.1. Let O be an operad and T the associated monad. There is an isomorphism
between the category of To algebras and the category of O algebras. It assigns to a Tp-space
X with structure map & the O-algebra action

0, :0()x X' Hox b X,
where w 1s the inclusion into the coproduct followed by the canonical projection.

The proof consists of verifying the different properties and checking that the above functor
is fully faithful. A more detailed account can be found in chapter 2 of [2].

2.2 FE,-operads

Recall the little intervals planar operad, whose n-ary operations are orientation preserving
embedding from the n-times unit interval into the unit interval. The F; operad is similar. The
difference is that the embeddings have to be rectilinear but not orientation preserving, which
comes from the fact that the little intervals operad was a planar operad, that is without the
action of the symmetric group, which we can freely add by dropping the requirement that the
embeddinges be orientation preserving. We now generalize this construction to embeddings
of higher dimenions.

Definition An open little n-cube is a map f = f1 X --- X f, from J", where J is the open
interval (0,1) ,to J™, where f;(t) = (y;i —x))t +a; for 0 < z; < y; <1 € J. Forn,j € N,
define E,(j) to be the space of j-tuples of little n-cubes with disjoint image. Here we choose
the subspace topology induced from the compact-open topology on Top(][_; J", J"). Define
the toplogical operad E, with the above data and the composition

y(e;dy, ... dg) =co(dyIL--- 11 dy).

The identity 1 € E,, (1) is the identity function and the action of 3; on E,(j) is by permuting
the order of the little cubes.

All properties required by an operad are easily shown to be satisfied. To construct the operad
FE+ we need maps oy, : By, — Ep41, given by

O'nJ(Cl,...,Cj):(Cl X 1,...,Cj X 1).

Definition Define the space Fs(j) = h_I)IlEn(]) This data can be extended to an operad

FE, with composition

Yool [da], - [di]) = yn (€ i ),

where each equivalence class is represented by an element (denoted by a prime) of En for a
sufficiently large N.

Recall the configuration spaces
F(']n>]) = {<$17 cee a$])|x2 € Jnvxi 7& 1;]}

Lemma 2.2. For 1 <n < oo an 1< j, E,(j) is homotopy equivalent to F(J",j).



Proof. For n < oo define g : E,(j) — F(J",j) by

1 1
gle,...,¢5) = (ci(a), ..., cn(a)), where a = (5, e 5)
The inverse map is given by associating to points (x1,...,z;) the little cubes given by the

biggest open cubes centered at these points so that the cubes do not intersect. A more explicit
desciption and a verification that these maps are homotopy inverse is given in the proof of
theorem 4.8 in [2].

To proof the case n = oo, we consider the embeddings

op: JV — JVTL
1
H —
e ()
Then the following diagramm commutes

J/ n lgn-!—l

F(J",j) =5 F(J"*j)
This allows us to obtain an isomorphism
goo = limgy, : Eoo(j) = F(J, ).
O

This comparison allows us to learn about the topological properties of the E,(j), if we
know the topology of the configuration spaces. May states the following proposition based on
work of Fadell and Neuwirth.

Proposition 2.3. Forn > 3 the configuration space F(J",j), is n—2 connected. For n = oo,
the configuration spaces F'(J*°, j) are contractible and for n = 1 the space F(J',j) is homotopy
equivalent to ¥; (with the discrete topology).

Recall that the associative topolgical operad Ass has the n-ary operations Ass(n) =
¥;, with the discrete topology. The commutative topological operad Comm has the n-ary
operations Comm(n) = x. As a corollary of the above proposition we obtain, that F; ~ Ass
and Eo, ~ Comm. It is easy to see, that the composition in F; and Ass agree under the
levelwise homotopy equivalence.

Now that we have learned about the E,-operads, where are ready to show that any n-fold
loop space comes with equipped with an action of one. Let Y = Q"X € Top with X € Top,.
Define the maps

Onj:En(j)x (Y)Y =Y

for c= (c1,...,¢j) € En(j), vy = (y1,...,y;) € Y7 and v € S" by

i, y)(v) = {ZT(U) iiffcqf (; )IZZZ)-

This is however easier understood pictorially. It is easily checked that this gives an action of
the operad E,. As before, this action extends in the case of n = oo because the action is
compatible with the inclusions o, : B, — E,11, i.e. the map from F,, into the endomorphism
operad factors through E, ;1. The rest of this section is concerned with the converse. Is every
space with an action of the E,, operad an n-fold loop space?

Towards this end, we need a comparison of the monads T, := Tg, and Q"X".
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Theorem 2.4 (approximation theorem). For 1 < n < oo and X € Top, let oy, : T, X —
QY X defined by

an : T, X 20 Tarsnx O ey,
This gives a map of monads and a,, is a weak homotopy equivalence for all connected X.

The proof is long and complicated. To see that «, gives a map of monads can be done
by evaluating explicitly commutative diagrams associated with the various properties and
morphisms involved. To see that «,, is also a weak homotopy equivalence is more difficult.
It is done inductively, by finding C,, X and Q">" X as the fibers of quasi fibrations from two
contratible spaces into C,,_15X and Q"~1¥"X.

2.3 Two-sided bar constuction and the delooping theorem

We want to use the approxiamtion theorem from the last section to prove that any E,-space
is an n-fold loop space. The problem is that the map 7,,X — X is in general not a homotopy
equivalence. We will replace T,, X by a space, so that X is a strong deformation retract of that
space, satisfying some nice properties that allows us to apply the approximation theorem. In
homologial algebra, this would be called 'taking a resolution’. To do this we must first pass
to the category STop of simplicial spaces, i.e. functors

AP — Top.

We will then get back to Top by applying geometric realization.

We can extend objects and endofunctors from Top to STop. Given X € Top, let X, € STop
be the degenerate simplicial space X, = X with face and degeneracy maps the identity. Given
an endofunctor T in Top, we can obtain an endofunctor T in STop, by (Tx(X.))n = T(X,).

Definition Let T be a monad in Top.. A T-functor (F,\) in a category C is a functor
F:Top, — C with A: FT — F such that the following diagrams commute.

A FTT £ BT
Y‘ lA l)\T lx
F FT —2 5 F

Note that T is itself a T-functor and that the composition of a T-funtor F with any functor
G:C — C' is a C'-functor.

Example The functor X" is a Ty,-functor, with transformation

Ax 1 ST (X) ~ ErQren(X) 22

(X)),

for X € Top, and 7 the counit of the adjunction X" - Q.

Given a monad (T, u,n), a T-functor (F,\) and a T-algebra (X, &), we define
B,(F,T,X) = FT'X € C.

We extend this to a simplicial object By in C, called the two-sided bar construction, by the
face and degeneracy maps

>\T‘1_1X lf Z = 07
0; = FTiilluTq—i-&-lX if0<i<gq,
FT91¢ if i =g,

si=FT"pa-ix.



The functoriality is given levelwise as the composition of the involved functors between the
monads and algebras. Explicitly, given a map ¢ : T" — T of monads, a map 7 : F — w*F/ of
T-functors and a map of T-algebras f: X — ¢*X ", where

WHEN) = (F X 0 F'y) (1)
VXL = (X € o),
one can check that this gives a map
B(r, v, f): B(F,T,X)— B(F , T, X).
One can visualise the face maps as follows
T X

F T T X

The face maps are each given by joining two components using the available maps. For
those familiar with Hochschild homology or perhaps group homology, this construction will
be reminiscent of bar construction there. This is not a coincidence, by applying the alternating
face map complex functor from the Dold Kan correspondence, we exactly obtain the afore-
mentioned bar complex. The bar complex is a resolution of the original algebra. In this more
general setting, we want to show that X, is a strong deformation retract of B(T,T, X).. We
need to show that the maps

fo: BJ(T,T,X) = X,

fa=goweo T
gv: X, = B(T, T, X)
gn:nn—i-l

are homotopy inverse. It is immediate, that
feo By =1idx,.
To specify a homotopy from g, o fi to the identity, i.e. a map
B.(T,T,X) x A' = B,(T, T, X)
with appropriate conditions on the restrictions, we can give maps
(hi)s : B«(T, T, X) = Bi1 (T, T, X)

with the property that
doho = g« © fs,
Ont1hn = idp,

and satisfying some further compatibility identities with the boundary and face maps. The
formulae can be found in chapter 8.3.1 in [4], where the homotopy is also constructed from
the above data.



We will not prove that the maps
(h2>* : B*(Tv T, X) - B*Jrl(Ta T, X)
hi = sglipei-ix, 9
where s} and ) are the i-th powers of the degeneracy and face maps of By, satisfy the required

identities.
We also observe that for any functor G

B.(GF,T,X) = G.B.(F, T, X).

We now apply the geometric realization. Given a simplicial space X, we define the geometric
realization as the space

HanA”/w

n<0

where ~ is the equivalence relation generated by
(Oiz,u) ~ (x,0;u)

(i, u) ~ (z, siu),

where J; and s; are the topological face and boundary maps of the n-simplex. One can show
that
| X ~ X

and that the geometric realization preserves homotopies. We denote g := |g«| and obtain a
homotopy equivalence
X % |B.(T,T,X)| := B(T, T, X).

In total we obtain the recognition principle.

Theorem 2.5 (May’s delooping theorem). Let X € Top be connected. X is an algebra over
the operad E,, for 1 < n < oo, if and only if X >~ Q™Y for some Y € Top,.

Proof. Let n < oo. Suppose X is an algebra over an E,-Operad. Then we obtain a algebra
over the induced monad 7;, and obtain a homotopy equivalence

B(an,1,1)
—_—

X % B(T,, Ty, X) B(Q"S", Ty, X) = | B.(S", Ty, X)| ~ Q"B(S", Ty, X).

The last homotopy equivalence follows from the nontrivial equivalence
| X, | ~ Q| X, (2)

For n = oo, the approximation theorem gives us an equivalence ay @ Too(X) = QoR>eX.
Then as before we obtain a homotopy equivalence

X % B(To, Too, X) 201D,

B(Q™¥* T, X).
To complete the argument we need to show that

B(Q®E® T, X) ~ QP B(5%, Tho, X).



We will not show this, but only say what we mean by the right hand side. The direct limit is
taken over the maps defined by the commutativity of the following diagram,

B, Ty, X) 2P0 X) pgitisinl 1 x)

A 3 g

QB(XLT;, X) ——— QM B(XH T4, X)

where o; : T; — T;41 is a morphism of monads induced from the morphism of the operads
E; — E; ;1. Here one also needs to verify that (Q'nX?, 0;,idx) is a suitable morphism in the
sense that B is functionial. The isomorphisms in the above diagram are constructed using
that the geometric realization commutes with colimits and equation (2).

The converse was shown in section (2.2). O

Remark To see that Q°B(X*°, T, X) is actually an n-fold loop space for all n, we construct
the n-fold delooping by

Q”liinQi’”B(Ei,Ti,X) ~ Q®B(E®, T, X).

The space imQ~"B(%%, T}, X) is constructed analogeous to diagram (3). We then obtain the
H

following commutative diagramm, which implies the above equivalence.

QOB T, X) —— QMBS T, X)

3 E

QB(XLT;, X) ———— QIFIB(ZH T, X)

Remark In the bar construction B(X",T,, X), we need T1i X to be a pointed space. The
point is chose to be
[T,(0) x (T4 1X)% € T2X.

3 FE, oc-operads

In the previous section we have constructed the topological E, operad. We can obtain a
simplicial colored operad E,, by applying the Sing functor to all E,(j). As in the case of
colored operads, we can obtain an oo-operad from this, as follows. There is a simplicial
category Ef with objects beeing natural numbers, and the simplicial mapping set

EZ(n,m):= [I I Enla'())
a:(n)—(m) 1<j<n
Taking the simplicial nerve gives a oo-category
E® := NA(ED).
Clearly, there is a forgetful functor
Ef? — Fin.

As in the case of colored operads, proven in proposition 2.1.1.27. in HA [1]|, we obtain that
E? is an oo-operad.

We have seen that the topological E; operad is equivalent to the topological associative operad
and that the topological F, operad is equivalent to the topological commutative operad. It
is immediate, that the construction above gives equivalent simplicial categories, which are
mapped to equivalent co-operads by the simplicial nerve.
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